14 research outputs found

    New Perspectives on Modelling and Control for Next Generation Intelligent Transport Systems

    Get PDF
    This PhD thesis contains 3 major application areas all within an Intelligent Transportation System context. The first problem we discuss considers models that make beneficial use of the large amounts of data generated in the context of traffic systems. We use a Markov chain model to do this, where important data can be taken into account in an aggregate form. The Markovian model is simple and allows for fast computation, even on low end computers, while at the same time allowing meaningful insight into a variety of traffic system related issues. This allows us to both model and enable the control of aggregate, macroscopic features of traffic networks. We then discuss three application areas for this model: the modelling of congestion, emissions, and the dissipation of energy in electric vehicles. The second problem we discuss is the control of pollution emissions in eets of hybrid vehicles. We consider parallel hybrids that have two power units, an internal combustion engine and an electric motor. We propose a scheme in which we can in uence the mix of the two engines in each car based on simple broadcast signals from a central infrastructure. The infrastructure monitors pollution levels and can thus make the vehicles react to its changes. This leads to a context aware system that can be used to avoid pollution peaks, yet does not restrict drivers unnecessarily. In this context we also discuss technical constraints that have to be taken into account in the design of traffic control algorithms that are of a microscopic nature, i.e. they affect the operation of individual vehicles. We also investigate ideas on decentralised trading of emissions. The goal here is to allocate the rights to pollute fairly among the eet's vehicles. Lastly we discuss the usage of decentralised stochastic assignment strategies in traffic applications. Systems are considered in which reservation schemes can not reliably be provided or enforced and there is a signifficant delay between decisions and their effect. In particular, our approach facilitates taking into account the feedback induced into traffic systems by providing forecasts to large groups of users. This feedback can invalidate the predictions if not modelled carefully. At the same time our proposed strategies are simple rules that are easy to follow, easy to accept, and significantly improve the performance of the systems under study. We apply this approach to three application areas, the assignment of electric vehicles to charging stations, the assignment of vehicles to parking facilities, and the assignment of customers to bike sharing stations. All discussed approaches are analysed using mathematical tools and validated through extensive simulations

    Delay-Tolerant Stochastic Algorithms for Parking Space Assignment

    Get PDF
    This paper introduces and illustrates some novel stochastic policies that assign parking spaces to cars looking for an available parking space. We analyze in detail both the main features of a single park, i.e., how a car could conveniently decide whether to try its luck at that parking lot or try elsewhere, and the case when more parking lots are available, and how to choose the best one. We discuss the practical requirements of the proposed strategies in terms of infrastructure technology and vehicles’ equipment and the mathematical properties of the proposed algorithms in terms of robustness against delays, stability, and reliability. Preliminary results obtained from simulations are also provided to illustrate the feasibility and the potential of our stochastic assignment policies

    A Markov-chain based model for a bike-sharing system

    Get PDF
    Bike-sharing systems are recently becoming ubiquitous in most cities, as an environmentally friendly alternative to other means of transportation. An optimal management of the bike-sharing service would in principle benefit from the availability of a mathematical model underlying the system. Accordingly, in this paper we propose a Markov-chain based approach to model the bike-sharing system, which we believe has a potential to develop alternative methods to implement classic control actions in a bike-sharing system (e.g., in terms of implementing alternative relocation strategies or planning advertising campaigns). The proposed methodology is validated on real data from the bike-sharing system in Boston, USA, and a first application of the proposed model is preliminarily illustrated in the paper

    A big-data model for multi-modal public transportation with application to macroscopic control and optimisation

    Get PDF
    This paper describes a Markov-chain-based approach to modelling multi-modal transportation networks. An advantage of the model is the ability to accommodate complex dynamics and handle huge amounts of data. The transition matrix of the Markov chain is built and the model is validated using the data extracted from a traffic simulator. A realistic test-case using multi-modal data from the city of London is given to further support the ability of the proposed methodology to handle big quantities of data. Then, we use the Markov chain as a control tool to improve the overall efficiency of a transportation network, and some practical examples are described to illustrate the potentials of the approach

    New Perspectives on Modelling and Control for Next Generation Intelligent Transport Systems

    Get PDF
    This PhD thesis contains 3 major application areas all within an Intelligent Transportation System context. The first problem we discuss considers models that make beneficial use of the large amounts of data generated in the context of traffic systems. We use a Markov chain model to do this, where important data can be taken into account in an aggregate form. The Markovian model is simple and allows for fast computation, even on low end computers, while at the same time allowing meaningful insight into a variety of traffic system related issues. This allows us to both model and enable the control of aggregate, macroscopic features of traffic networks. We then discuss three application areas for this model: the modelling of congestion, emissions, and the dissipation of energy in electric vehicles. The second problem we discuss is the control of pollution emissions in eets of hybrid vehicles. We consider parallel hybrids that have two power units, an internal combustion engine and an electric motor. We propose a scheme in which we can in uence the mix of the two engines in each car based on simple broadcast signals from a central infrastructure. The infrastructure monitors pollution levels and can thus make the vehicles react to its changes. This leads to a context aware system that can be used to avoid pollution peaks, yet does not restrict drivers unnecessarily. In this context we also discuss technical constraints that have to be taken into account in the design of traffic control algorithms that are of a microscopic nature, i.e. they affect the operation of individual vehicles. We also investigate ideas on decentralised trading of emissions. The goal here is to allocate the rights to pollute fairly among the eet's vehicles. Lastly we discuss the usage of decentralised stochastic assignment strategies in traffic applications. Systems are considered in which reservation schemes can not reliably be provided or enforced and there is a signifficant delay between decisions and their effect. In particular, our approach facilitates taking into account the feedback induced into traffic systems by providing forecasts to large groups of users. This feedback can invalidate the predictions if not modelled carefully. At the same time our proposed strategies are simple rules that are easy to follow, easy to accept, and significantly improve the performance of the systems under study. We apply this approach to three application areas, the assignment of electric vehicles to charging stations, the assignment of vehicles to parking facilities, and the assignment of customers to bike sharing stations. All discussed approaches are analysed using mathematical tools and validated through extensive simulations

    New Perspectives on Modelling and Control for Next Generation Intelligent Transport Systems

    No full text
    This PhD thesis contains 3 major application areas all within an Intelligent Transportation System context. The first problem we discuss considers models that make beneficial use of the large amounts of data generated in the context of traffic systems. We use a Markov chain model to do this, where important data can be taken into account in an aggregate form. The Markovian model is simple and allows for fast computation, even on low end computers, while at the same time allowing meaningful insight into a variety of traffic system related issues. This allows us to both model and enable the control of aggregate, macroscopic features of traffic networks. We then discuss three application areas for this model: the modelling of congestion, emissions, and the dissipation of energy in electric vehicles. The second problem we discuss is the control of pollution emissions in eets of hybrid vehicles. We consider parallel hybrids that have two power units, an internal combustion engine and an electric motor. We propose a scheme in which we can in uence the mix of the two engines in each car based on simple broadcast signals from a central infrastructure. The infrastructure monitors pollution levels and can thus make the vehicles react to its changes. This leads to a context aware system that can be used to avoid pollution peaks, yet does not restrict drivers unnecessarily. In this context we also discuss technical constraints that have to be taken into account in the design of traffic control algorithms that are of a microscopic nature, i.e. they affect the operation of individual vehicles. We also investigate ideas on decentralised trading of emissions. The goal here is to allocate the rights to pollute fairly among the eet's vehicles. Lastly we discuss the usage of decentralised stochastic assignment strategies in traffic applications. Systems are considered in which reservation schemes can not reliably be provided or enforced and there is a signifficant delay between decisions and their effect. In particular, our approach facilitates taking into account the feedback induced into traffic systems by providing forecasts to large groups of users. This feedback can invalidate the predictions if not modelled carefully. At the same time our proposed strategies are simple rules that are easy to follow, easy to accept, and significantly improve the performance of the systems under study. We apply this approach to three application areas, the assignment of electric vehicles to charging stations, the assignment of vehicles to parking facilities, and the assignment of customers to bike sharing stations. All discussed approaches are analysed using mathematical tools and validated through extensive simulations

    On Closed-Loop Bicycle Availability Prediction

    No full text
    corecore